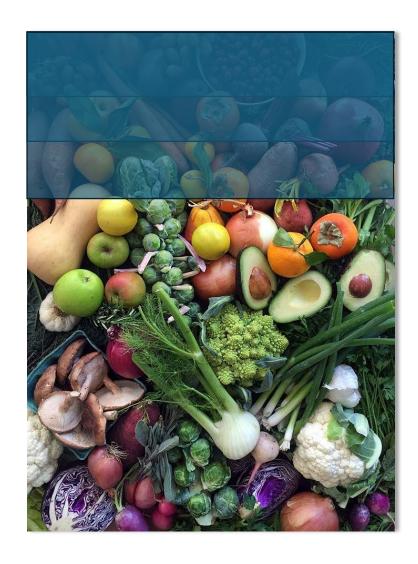


Giovanni Cortella

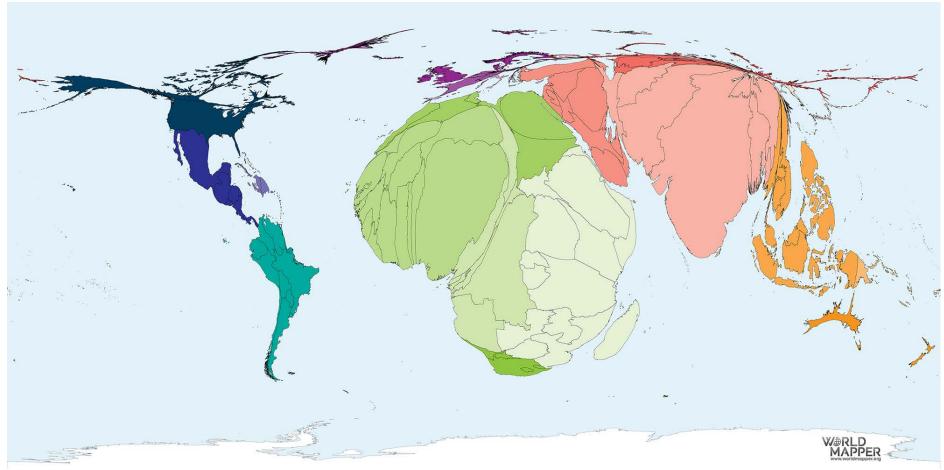
University of Udine (I)

International Institute of Refrigeration

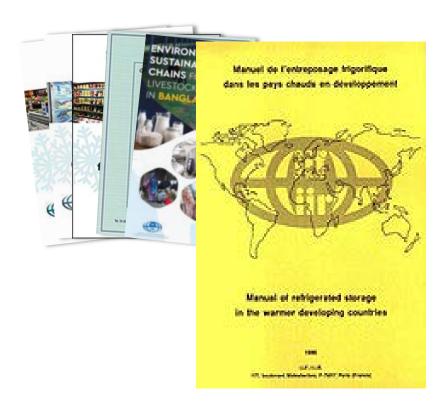


13% of food is lost in the world21% of food is lost in sub-Saharan Africa...

... up to 33 %



Expected population growth 2015-2050



WALK-IN COLD ROOMS, A PRACTITIONER'S TECHNICAL GUIDE

Design and Operation of Walk-In Cold Rooms for Precooling and Storage of Fresh Produce in Hot Climates, in Off-Grid and Unreliable Grid Situations

Nya Abagi Monique Baha Chris Beland

Kilian Blumenthal

Leo Blyth

Thomas Bundi

Nirmita Chandrashekar

Eva Lee Chih-Jung

Giovanni Cortella

Philipp Denzinger

Ravindra Dolare

Jean-Luc Dupont

Aurélie Durand

Chris Emmott

Judith Evans

Nitin Goel

Ellie Grebenik

Nathalie de Grissac

Harish Hande

Bas Hetterscheid

Deirdre Holcroft

Pat Hughes

Makena Ireri

Huda Jaffer

Efficiency for Access (CLASP)

International Institute of Refrigeration

Efficiency for Access (Energy Saving Trust)

GIZ WE4F

ESMAP Efficient Clean Cooling Program

Strathmore University

SELCO Foundation

GIZ Benin

University of Udine

GIZ Proklima

Ecozen

International Institute of Refrigeration

International Institute of Refrigeration

Acumen

London South Bank University
Inficold India Private Limited

Efficiency for Access (Energy Saving Trust)

International Institute of Refrigeration

SFI CO Foundation

Wageningen University & Research

The Postharvest Education Foundation

Patrick Hughes Ltd

Efficiency for Access (CLASP)

SELCO Foundation

Bernie Jones

Dimitris Karamitsos

Laurie Kent

Lisa Kitinoja,

Julian Krueger

Elisa Lai

Pramod Majety Niraj Marathe

Steve McCarney

Sonja Mettenleiter

Charlie Miller

Julian Mitchell

Maryvelma Nafula

Olubukola Odeyemi

Theerada Reinhardt

Karthika Sasidharan

Jeremy Tait

Vijay Yadav Tokala

Victor Torres Toledo

Zafer Ure

Jan Verschoor

Jakub Vrba

Bing Xu

Smart Villages Research Group

The Basel Agency for Sustainable Energy (BASE)

Smart Villages Research Group

The Postharvest Education Foundation

W. Giertsen Energy Solutions

CLASP - Verasol

Ecozen

CoolCrop

ESMAP Efficient Clean Cooling Program, and Sunny Day LLC

Solar Cooling Engineering

Efficiency for Access (Energy Saving Trust)

InspiraFarms Cooling

UNESCO Chair for Climate Change Resilience and Sustainability

Strathmore University

The Postharvest Education Foundation

Fosera

Global SDG7 Hubs

Tait Consulting

The Postharvest Education Foundation

Solar Cooling Engineering

Phase Change Material Products Limited

Wageningen University & Research

Efficiency for Access (Energy Saving Trust)

Heriot-Watt University

ESMAP Efficient Clean Cooling Program, 2023

ACCESS TO

APPLIANCES

WALK-IN COLD ROOMS, A PRACTITIONER'S TECHNICAL GUIDE Dauge and Question of Walk- Local florms of Proceedings and Dauge of the Procedure of Walk- of the Colorean. In Order and United the Order of the Colorean. Section 1

€ FOR AC

Purpose of the guide

To present accessible, practical guidance that enables developers, owners, operators and suppliers to specify, install and operate effective and appropriate precoolers and cold rooms that are as economically viable as possible in off-grid, unreliable and limited power supply situations.

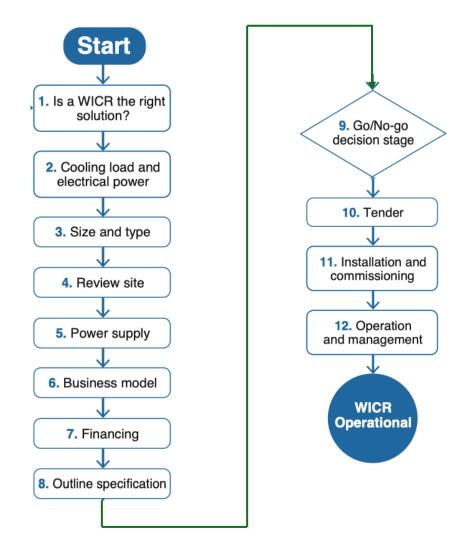
WALK-IN COLD ROOMS, A PRACTITIONER'S TECHNICAL GUIDE Drops and Questined With in Odd Rooms for Proceedings and Drops of Profession of With in Odd Rooms for Proceedings and Drops of Profession for Discourse. Of Contract Contract

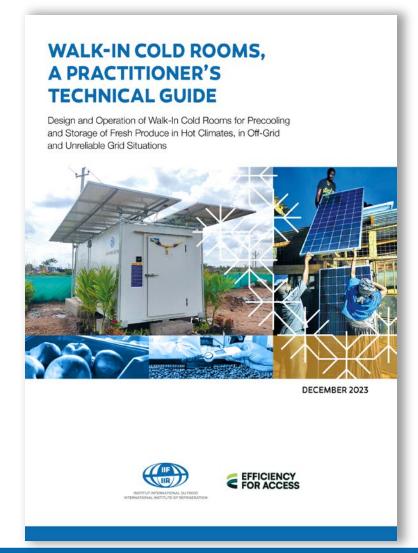
Key points

- Walk-In Cold Rooms up to 80 m³
- Horticultural and agricultural produce only (not meat, fish, milk, pharmaceuticals...)
- Chilled storage only
- Vapour compression refrigerating system electrically driven
- Reliability and affordability are priorities
- Innovative financing and business models are considered
- Suggestions for a correct planning

Power supply

- Reliable grid, unreliable grid and off-grid solutions are considered
- Particular focus on solar photovoltaic energy source
- Energy storage:
 - Electrical energy storage
 - Thermal energy storage

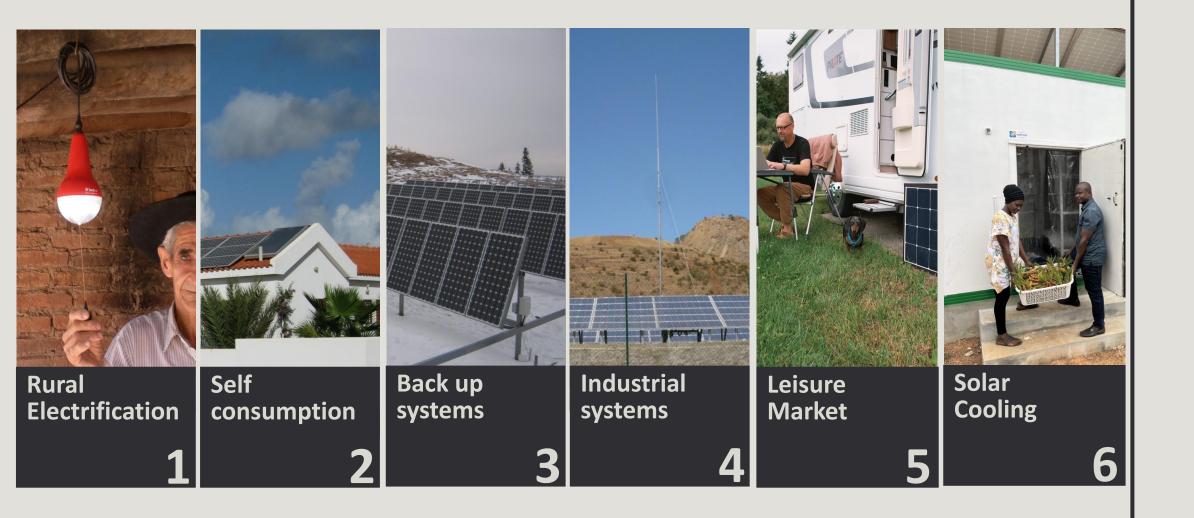




WALK-IN COLD ROOMS, A PRACTITIONER'S TECHNICAL GUIDE

Design and Operation of Walk-In Cold Rooms for Precooling and Storage of Fresh Produce in Hot Climates, in Off-Grid and Unreliable Grid Situations

Solar Cooling Solutions


PHAESUN KEY FACTS

- Founded in 2001 by representatives of the solar industry
- Based in Memmingen, Germany
- A team of 40Off-Grid experts
- Focus on energy
 independence through

 PV power supply

- Partners and projects in more than 80 countries
- Comprehensive product portfolio with more than 3400 products
- Phaesun QualityManagement ISO9001-2015

APPLICATIONS

Local needs assessment

A comprehensive needs assessment is crucial in the initial phase to be able to make a suitable system design.

- Target temperature
- Storage volume
- Extended scope of services
- Daily input [kg/day]

- Business model
- Socio-cultural considerations

Modularity for Cold Rooms

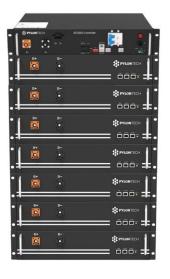
DC Cold Room

A modular approach allows for a low-CAPEX market entry, with the flexibility to expand as the business gains traction.

DC-powered
SelfChill® Cooling Units

Modularity for Cold Rooms

AC Cold Room


A modular approach allows for a low-CAPEX market entry, with the flexibility to expand as the business gains traction.

1 Unit \rightarrow 600 kg/day 2 Units \rightarrow 1500 kg/day 4 Units \rightarrow 3000 kg/day

Autonomy Considerations

The required level of autonomy ultimately results from a trade-off between reliable cooling performance and the potential economic loss in the event of a cooling failure.

Influencing parameters:

- Hybrid systems: probability distribution of power outages (frequency, duration, seasonality, day/night)
- Potential economic loss in the event of breakdown
- Equipment cost of extended autonomy (battery capacity / thermal storage)

Thermal vs. battery storage

Both alternatives present trade-offs that require careful consideration depending on the individual circumstances.

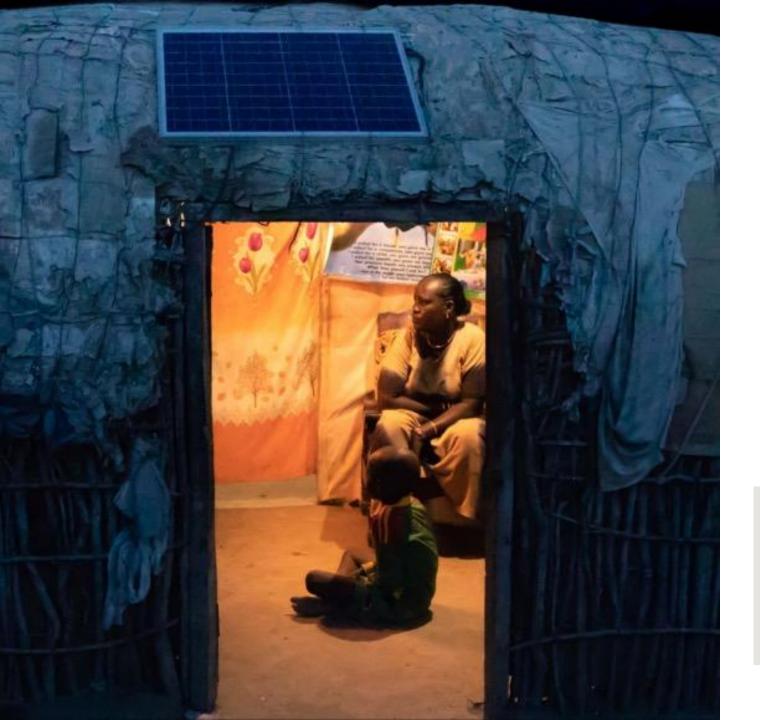
	Thermal storage	Battery storage
Energy efficiency	++	+
Cost-effective	0	0
Lifespan	++	+
Environmental impact	++	_
Flexibility	_	++

PLEASE CONTACT US!

STAY INDEPENDENT

Phaesun GmbH Brühlweg 9 87700 Memmingen Germany

Florian Martini Tel: +49 (8331) 990 42 0 florian.martini@phaesun.com


www.phaesun.com order.phaesun.com

THANK YOU ...

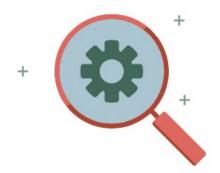
VeraSol Quality Assurance Overview

Leaving no one behind

VeraSol works to increase access to modern energy services through high-quality off-grid solar products that build confidence in modern solar solutions and protect the most vulnerable consumers.

100 million people

currently have improved energy access from using VeraSol certified solar energy kits.

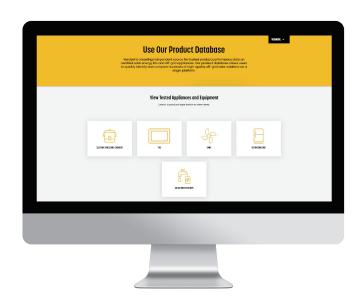

Why Quality Assurance?

Product manufacturers, distributors, policymakers, development partners, and other stakeholders use VeraSol to make smarter decisions that reduce risk, increase impact, and improve the efficacy of their work.

Enable Smarter Decisions

Reduce Risk

Increase Impact



Elements of VeraSol Quality Assurance Framework

VeraSol is a quality assurance program that supports high-performing, durable off-grid solar solutions.

data.VeraSol.org

VeraSol Quality Assurance Framework

CERTIFICATION

Evaluate and confirm products meet quality standards

QUALITY STANDARDS

Determine and set baseline levels of product quality

TESTING & DATA

Generate product performance and quality data to inform actions

TEST LAB CAPACITY

Identify and support testing partners to provide testing services

TEST METHODS

Define how product quality and performance is measured

Why QA for WICR?

1. Ensure Performance & Reliability

- Protect perishable goods with consistent temperature control
- Reduce breakdowns and downtime

2. Safeguard Investments

- Cold rooms are high-value assets
- Quality assurance lowers lifecycle costs and ensures durability

3. Support End-User Confidence

- Farmers, distributors, and businesses can trust WICRs to deliver
- Builds market reputation for suppliers and installer

4. Enable Market Growth

- Standardized quality benchmarks foster fair competition
- Supports wider adoption of cold storage solutions in off-grid and weak-grid areas

Work to date - 2023 to now

Survey of published WICR details and spec sheets

Review of existing test protocols & studies -> landscape review

Test method Expert Group - met 3 times drafting protocol

Pilot lab test at Wageningen with final Expert Group meeting

Field test protocol development ongoing; pilot Q4/2025

10.2 General product information Converted ISO With floor Pre-assembled Construction □ Yes □ Prefabricated kit container □ Customised on site Other - description: □ No □ Refrigerated container *2b. Gross Height (m) ____ Width (m) _ Length (m) storage volu (m³)10.3 Cooling function 2c. Net stora *3a. Refrigeration Cooling technology (more than one could apply): capacity 2d. Gross system type and □ Vapour compression □ Absorption □ Thermo-electric □ storage floo configuration Evaporative cooling Dessicant based area that has >1.6m headroom (r 10.4 Electrical power source(s) *2e. Cooling services for *3b. (which the ur *4a. Input supply | More than one may apply: designed Cooli □ AC single phase □ AC 3-phase type(s) kW □ 50Hz AC □ 60Hz AC 3c. Re *4b. Input voltage | DC voltage input range (lowest to highest) syste 2f. Humidifie capa function 10.5 Energy performance and efficiency normal or *4c. Input 2g. Weather protection for supply typ *5a. Energy consumption kWh/24 hrs, at highest rated climate zone WICR accommo (kWh/24 hrs) temperature and lowest rated storage temperature (as (tick all th determined using the VaraSol WICR test protocol or similar) apply) *2h, Rated *5b. Thermal loss rate of Total thermal loss rate kW, at rated operating operating the insulated enclosure conditions conditions *3d. / (kW) inside 5c. Ratio of cooling kW/kW capacity to heat leakage (kW/kW) *5d. Insulation material *4d. Over 3e. T€ type, walls (common *2i, Refrigera stabil system in name of insulating power (ra material) 2j. Refrigera peak) 5e. U-value of insulation Floor Walls Door Ceiling Window details Repre panel components COP (W/m2K), new material rating (non-aged) 5f. U-value of insulation Walls Door Ceiling Floor panel components Uvalue ('aged value', also called 'design value') (W/m²K)*5g. Thickness of Ceiling Floor Window Walls Door insulation panels (mm) glazing: ☐ Single □ Double ☐ Triple 5h. Features to reduce air □ Simple manual door. □ Automatic door closure infiltration when door ☐ Strip curtain

WICR Product Information Sheet: A standard way to fully and fairly inform buyers

- Some parameters mandatory for VeraSol registration; others recommended
- Recommended for all suppliers to adopt

☐ Feedback to improve sheet is welcome, by 31. October

The WICR lab test protocol

Based on the ATP protocol for testing refrigerated containers, and a WICR test method of India

- 1. **Empty pull-down** test from 32°C to 1°C
- 2. Pull-down test with **dummy load** of 10% of capacity (bottled water in crates)
- Steady state effectiveness test with fan heaters inside: temp. stability, energy consumption, cooling capacity, COP

- 4. **Autonomy** test: switch off and measure time taken for average temp. to rise by 5°C
- 5. **Heat leakage** test (k-value): steady state with fan heaters inside, adjusted to a target temperature difference inside/outside -> calculate k-value
- 6. Air flow (fans): Check air speed and calculate flow and air changes per hour.

The WICR field test protocol

- Ø Based on the lab testing protocol
- Simplified & shortened
- Ø More affordable
- Ø Possible to include in commissioning of WICR

- **Empty pull-down** test from ambient to 1°C
- Steady state effectiveness test with fan heaters inside: temp. stability, energy consumption, cooling capacity, COP
- W Heat leakage test (k-value): steady state with fan heaters inside -> calculate k-value
- **Autonomy** test: switch off and measure time taken for average temp. to rise by 5°C

Visit our website:

VeraSol.org

Contact us:

Sonja Mettenleiter sonja@mettenleiter-consulting.com

Elisá Lai elai@clasp.ngo

iomolo.consultant@clasp.ngo jeremy@taitconsulting.de Isaiah Omolo

Jeremy Tait

